
Note: In this problem set, expressions in green cells match corresponding expressions in the 
text answers.
ClearAll["Global`*⋆"]

1 - 8 Comments on text and examples

1. Verify theorem 1 for the integral of z2 over the boundary of the square with vertices ±1 
±ⅈ. Hint. Use deformation.

3. Deformation principle. Can we exclude from Example 4 that the integral is also zero 
over the contour in Prob. 1?

5. Connectedness. What is the connectedness of the domain in which 
Cosz2
z4+1  is analytic?

7. Deformation. Can we conclude in Example 2 that the integral of 1
z2+4  over (a) 

z-− 2 =2 and (b) |z-2|=3 is zero?

9 - 19 Cauchy’s Theorem applicable?
Integrate f(z) counterclockwise around the unit circle. Indicate whether Cauchy’s integral 
theorem applies.

9. f[z_] = Exp-−z2

The s.m. covers this problem and is helpful.
ClearAll["Global`*⋆"]

In the Real plane, an ordinary plot, if smooth, substantiates analyticity for me. Looking at 
the double plot below, it is true that the unit circle is a simple closed path enclosed in a 
simply connected domain D. 

p1 = PlotExp-−z2, {z, -−6, 6}, AspectRatio → 0.3, ImageSize → 350,

AxesLabel → {"z", "f[z]"}, PlotStyle → {Red, Thickness[0.005]};

p2 = ParametricPlotReⅇⅈ t, Imⅇⅈ t, {t, 0, 2 π}, ImageSize → 150

;



Show[p2, p1]
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h[z_] = Exp-−z2

ⅇ-−z2

f[x_, y_] = h[z] /∕. z → (x + ⅈ y)

ⅇ-−(x+ⅈ y)2

ComplexExpand[%]

ⅇ-−x2+y2 Cos[2 x y] -− ⅈ ⅇ-−x2+y2 Sin[2 x y]

The function is accepted to be analytic for all real x and y. It meets the requirements of 
Cauchy’s theorem, and therefore the contour integral equals zero.

11. f[z_] =
1

2 z -− 1

In[2]:= ClearAll["Global`*⋆"]

This one does not pass the analyticity sanity check. The curve is not smooth within the unit 
circle. Therefore the integral is not zero, it must be something else.
Range[-−6, 6];

In[1]:= Range[-−2, 2, 0.5];

In[3]:= p1 = Plot
1

2 z -− 1
, {z, -−2, 2}, AspectRatio → 0.2,

AxesLabel → {"z", "f[z]"}, PlotStyle → {Red, Thickness[0.006]},
Ticks → {{-−2.`, -−1.5`, -−1.`, -−0.5`, 0.`, 0.5`, 1.`, 1.5`, 2.`},

{-−2.`, -−1.5`, -−1.`, -−0.5`, 0.`, 0.5`, 1.`, 1.5`, 2.`}},
PlotRange → {{-−2, 2}, {-−2, 2}};

p2 = ParametricPlotReⅇⅈ t, Imⅇⅈ t, {t, 0, 2 π}, ImageSize → 150

;
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In[5]:= Show[p2, p1]

Out[5]=
-−1.0 -−0.5 0.5 1.0
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1.0

The problem function is

h[z_] =
1

2 z -− 1
1

-−1 + 2 z

and the equivalent in the complex plane is
f[x_, y_] = h[z] /∕. z → (x + ⅈ y)

1

-−1 + 2 (x + ⅈ y)

and the complex plane version still demonstrates the non-analytic point.

f
1

2
, 0

Power::infy: Infiniteexpression 
1

0
 encountered. !

ComplexInfinity

The function is expanded.

ComplexExpand
1

-−1 + 2 (x + ⅈ y)


-−
1

(-−1 + 2 x)2 + 4 y2
+

2 x

(-−1 + 2 x)2 + 4 y2
-−

2 ⅈ y

(-−1 + 2 x)2 + 4 y2

The s.m. gets around the problem of discontinuity by using the method of deformation of 
path, an allowable method described on p. 656. Instead of allowing z to take on the value 

of 1
2 , a new function, z(t)= 1

2 +ⅇⅈ t is substituted, moving the unit circle away from the 

discontinuous point.

Note: The cells below in cyan do not apply directly to the problem, being only feel-good 
extra steps. Their relevance is explained in the cyan cells further down.
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ParametricPlotRe
1

2
+ ⅇⅈ t, Imⅇⅈ t, Reⅇⅈ t, Imⅇⅈ t,

{t, 0, 2 π}, ImageSize → 150, AxesLabel → {"Re", "Im"},
Epilog -−> {PointSize[0.03], Point[{0.25, 0.968246}]}

-−1.0 -−0.5 0.5 1.0 1.5
Re

-−1.0

-−0.5

0.5
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Im

Plot 1 -− x2 , 1 -− x -−
1

2

2
, {x, -−1, 2},

AspectRatio → Automatic, ImageSize → 150

-−1.0 -−0.5 0.5 1.0 1.5 2.0

0.2
0.4
0.6
0.8
1.0

Solve 1 -− x2 -− 1 -− x -−
1

2

2
⩵ 0, x

Solve::ifun: Inversefunctionsare beingusedby Solve,
so somesolutionsmaynotbe found; use Reduceforcompletesolutioninformation. !

x →
1

4


N 1 -−
1

4

2


0.968246

With the new z, the s.m. achieves the following

f[z_] = h[z] /∕. z →
1

2
+ ⅇⅈ t

1

-−1 + 2  1
2
+ ⅇⅈ t

Now comes an important addition to the procedure. This is use of numbered line (10) on 
page 647:
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Now comes an important addition to the procedure. This is use of numbered line (10) on 
page 647:


C
f[z] ⅆz = 

a

b
f[z[t]] z

·
[t] ⅆt where z

·
[t] = D[z[t], t]

Incorporating the derivative of z into the contour integral. This derivative,

D
1

2
+ ⅇⅈ t, t

ⅈ ⅇⅈ t

turns the expression into

Integrate
ⅈ ⅇⅈ t

-−1 + 2  1
2
+ ⅇⅈ t

, {t, 0, 2 π}

ⅈ π

Matching the answer in the text.

Integrating around the unit circle, it doesn’t matter where to start and finish, so the 
above green answer is valid. However, it feels a little better to make the shared point 
between original and new unit circles the start/end point.

z = 0.25 + ⅈ 0.9682458365518543`

0.25 + 0.968246 ⅈ

ArcTan0.9682458365518543`  0.25

1.31812

Integrate
ⅈ ⅇⅈ t

-−1 + 2  1
2
+ ⅇⅈ t

, {t, 0, 1.318116071652818`}

0. + 0.659058 ⅈ

Integrate
ⅈ ⅇⅈ t

-−1 + 2  1
2
+ ⅇⅈ t

, {t, 1.318116071652818`, 2 π}

0. + 2.48253 ⅈ
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0.659058035826409` ⅈ + 2.4825346177633842` ⅈ

0. + 3.14159 ⅈ

Repeating the answer obtained when integrating from 0 to 2 π.

13. f[z_] =
1

z4 -− 1.1

In[6]:= ClearAll["Global`*⋆"]

In[7]:= p1 = Plot
1

z4 -− 1.1
, {z, -−2, 2}, AspectRatio → 0.2,

AxesLabel → {"z", "f[z]"}, PlotStyle → {Red, Thickness[0.003]},
Ticks → {{-−2.`, -−1.5`, -−1.`, -−0.5`, 0.`, 0.5`, 1.`, 1.5`, 2.`},

{-−2.`, -−1.5`, -−1.`, -−0.5`, 0.`, 0.5`, 1.`, 1.5`, 2.`}},
PlotRange → {{-−2, 2}, {-−2, 2}};

In[8]:= p2 = ParametricPlotReⅇⅈ t, Imⅇⅈ t, {t, 0, 2 π}, ImageSize → 150

;

In[9]:= Show[p2, p1]

Out[9]=
-−1.0 -−0.5 0.5 1.0

-−1.0

-−0.5

0.5

1.0

 The problem instructions are to integrate on the unit circle. As it turns out, the closest 
points of discontinuity are exterior to the unit circle, and noting this fact avoids further 
calculations. It meets the requirements of Cauchy’s theorem, and therefore the contour 
integral equals zero.

15. f[z_] = Im[z]

ClearAll["Global`*⋆"]

I’ll try this problem, which is not in the s.m., by following the ‘steps in applying theorem 
2’ on p. 648:
(A) Represent the path C in the form z(t), (a ≤ t ≤ b).
(B) Calculate the derivative z·(t) = dz/dt.
(C) Substitute z(t) for every z in f(z) (hence x(t) for x and y(t) for y).
(D) Integrate f[z(t)]z·(t) over t from a to b.
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I’ll try this problem, which is not in the s.m., by following the ‘steps in applying theorem 
2’ on p. 648:
(A) Represent the path C in the form z(t), (a ≤ t ≤ b).
(B) Calculate the derivative z·(t) = dz/dt.
(C) Substitute z(t) for every z in f(z) (hence x(t) for x and y(t) for y).
(D) Integrate f[z(t)]z·(t) over t from a to b.

Step (A). Looking at example 5 on p. 648, the path of the unit circle is represented as 
z[t_] = Cos[t] + ⅈ Sin[t]

Cos[t] + ⅈ Sin[t]

Step (B). Calculate the derivative z·(t)
devz = D[z[t], t]

ⅈ Cos[t] -− Sin[t]

Step (C). Substitute z(t) for every z in f(z)
f[z_] = Im[z] /∕. z → (Cos[t] + ⅈ Sin[t])

Im[Cos[t]] + Re[Sin[t]]

Step (D). Integrate f[z(t)]z·(t) over t from a to b.
Integrate[ f[z] devz, {t, 0, 2 π}]

-−π

The text answer is the same as the green cell above.

Belatedly, I check the analyticity,
u[x_, y_] = 0

0

v[x_, y_] = y

y

D[u[x, y], x]

0

D[v[x, y], y]

1

The cyan cells are not equal, therefore the function is not analytic, and therefore Cauchy' s 
theorem cannot apply.

17. f[z_] =
1

z 2

ClearAll["Global`*⋆"]
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f[x_, y_] =
1

Abs[x + y ⅈ]2

1

Abs[x + ⅈ y]2

ComplexExpand[%]
1

x2 + y2

Since there is no imaginary component, it looks like D[v[x,y],y] will equal zero, whereas 
D[u[x,y],x] will not. So the function is not analytic. Skipping, then, the Cauchy Theorem 
option, I will go on to an attempted solution.

Having had luck the last problem, I will again try the ‘steps in applying theorem 2’ on p. 
648:
(A) Represent the path C in the form z(t), (a ≤ t ≤ b).
(B) Calculate the derivative z·(t) = dz/dt.
(C) Substitute z(t) for every z in f(z) (hence x(t) for x and y(t) for y).
(D) Integrate f[z(t)]z·(t) over t from a to b.

Step (A). Looking at example 5 on p. 648, the path of the unit circle is represented as 

z[t_] = ⅇⅈ t

ⅇⅈ t

(B) Calculate the derivative z
·

(t) = dz/∕dt.

devz = D[z[t], t]

ⅈ ⅇⅈ t

(C) Substitute z(t) for every z in f(z) (hence x(t) for x and y(t) for y).

f[z[t]] =
1

2 ⅇ2 ⅈ t

1

2
ⅇ-−2 ⅈ t

(D) Integrate f[z (t)] z
·

(t) over t from a to b.

Integrate
1

2
ⅇ-−2 ⅈ t devz, {t, 0, 2 π}

0

The green cell matches the text answer. In this case the Exp version of f[z] worked, but the 
Trig version did not. In the last problem it was the reverse. In this problem a zero integral 
is encountered which, however, does not qualify for its zip status because of the Cauchy 
Theorem, but rather because of its innate zeroness.
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The green cell matches the text answer. In this case the Exp version of f[z] worked, but the 
Trig version did not. In the last problem it was the reverse. In this problem a zero integral 
is encountered which, however, does not qualify for its zip status because of the Cauchy 
Theorem, but rather because of its innate zeroness.

19. f[z_] = z3 Cot[z]

In[10]:= ClearAll["Global`*⋆"]

In[29]:= p1 = Plotz3 Cot[z], {z, -−6, 6}, AspectRatio → 0.3, ImageSize → 350,

AxesLabel → {"z", "f[z]"}, PlotStyle → {Red, Thickness[0.005]};

In[28]:= p2 = ParametricPlotReⅇⅈ t, Imⅇⅈ t, {t, 0, 2 π}, ImageSize → 150

;

In[27]:= Show[p2, p1]

Out[27]=
-−1.0 -−0.5 0.5 1.0

-−1.0

-−0.5

0.5

1.0

The plot shows that the problem function is well-behaved and has no discontinuities in the 
domain of interest.

In[11]:= f[z_] = z3 Cot[z]

Out[11]= z3 Cot[z]

In[12]:= f[x_, y_] = f[z] /∕. z → x + ⅈ y

Out[12]= (x + ⅈ y)3 Cot[x + ⅈ y]

In[18]:= ComplexExpand[%];

In[19]:= u[x_, y_] = -−
x3 Sin[2 x]

Cos[2 x] -− Cosh[2 y]
+

3 x y2 Sin[2 x]

Cos[2 x] -− Cosh[2 y]
-−

3 x2 y Sinh[2 y]

Cos[2 x] -− Cosh[2 y]
+

y3 Sinh[2 y]

Cos[2 x] -− Cosh[2 y]
;

In[20]:= v[x_, y_] = -−
3 x2 y Sin[2 x]

Cos[2 x] -− Cosh[2 y]
+

y3 Sin[2 x]

Cos[2 x] -− Cosh[2 y]
+

x3 Sinh[2 y]

Cos[2 x] -− Cosh[2 y]
-−

3 x y2 Sinh[2 y]

Cos[2 x] -− Cosh[2 y]
;
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In[21]:= PossibleZeroQ[D[u[x, y], x] -− D[v[x, y], y]]
PossibleZeroQ[D[v[x, y], x] + D[u[x, y], y]]

Out[21]= True

Out[22]= True

It is seen above that the Cauchy-Riemann criteria are satisfied, therefore the value of the 
integral of the function around the unit circle is zero, in agreement with the text answer.

20 - 30 Further Contour Integrals
Evaluate the integral. Does Cauchy’s theorem apply?

21. 
1

z -− 3 ⅈ
ⅆz , the circle z = π counterclockwise

ClearAll["Global`*⋆"]


1

z -− 3 ⅈ
ⅆz

I will first try the example 5 steps.
(A) Represent the path C in the form z(t), (a ≤ t ≤ b).
(B) Calculate the derivative z·(t) = dz/dt.
(C) Substitute z(t) for every z in f(z) (hence x(t) for x and y(t) for y).
(D) Integrate f[z(t)]z·(t) over t from a to b.

Step (A). Since z[t_] = ⅇⅈ t is a unit circle, I suppose that π ⅇⅈ t is a circle of radius π.

ParametricPlotReπ ⅇⅈ t, Imπ ⅇⅈ t,

{t, 0, 2 π}, ImageSize → 150, AxesLabel → {"Re", "Im"}

-−3 -−2 -−1 1 2 3
Re

-−3

-−2

-−1

1

2

3

Im

The plot looks okay as far as radius, I think.

z[t_] = π ⅇⅈ t

ⅇⅈ t π

Step (B). 
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devz = D[z[t], t]

ⅈ ⅇⅈ t π

Step(C).

Integrate
1

π ⅇⅈ t -− 3 ⅈ
devz, {t, 0, 2 π}

2 ⅈ π

The green cell answer matches that of the text.

23. 
2 z -− 1

z2 -− z
ⅆz ,

counterclockwise around an ellipse with foci at origin and (2, 0). Use partial fractions.

This problem is worked in the s.m.
ClearAll["Global`*⋆"]


2 z -− 1

z2 -− z
ⅆz

ContourIntegral
-−1 + 2 z

-−z + z2
, z

Ploty /∕. Solve
x -− 1

2
^2 + 

y

1
^2 ⩵ 1,

{x, -−2, 4}, AspectRatio → Automatic, ImageSize → 350,
AxesLabel → {"Re", "Im"}, GridLines → Automatic,
Epilog → {Red, Line[{{1, 0}, {2, 0}}]}, {Text["1", {1.5, -−0.1}]},

{Red, Line[{{1, 0}, {1, 1}}]}, {Text["1", {0.9, 0.5}]},

{Red, Line[{{1, 1}, {2, 0}}]}, Text" 2 ", {1.7, 0.6},
{PointSize[0.014], Point[{1, 1}]}, {PointSize[0.014], Point[{1, 0}]},
{PointSize[0.014], Point[{2, 0}]}, {PointSize[0.014], Point[{0, 0}]}

The above plot displays an ellipse which satisfies the problem description. The problem is 
actually simple, provided example 6 on p. 656 is used, as pointed out by the s.m. The prob-
lem’s problem is that there are two points of discontinuity: 0 and 1. The hint to use partial 
fractions solves the issue by splitting the domain into two parts as shown schematically 
below. This schematic sketch represents two paths, each incorporating the dashed line, 
which will be added together. 
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The above plot displays an ellipse which satisfies the problem description. The problem is 
actually simple, provided example 6 on p. 656 is used, as pointed out by the s.m. The prob-
lem’s problem is that there are two points of discontinuity: 0 and 1. The hint to use partial 
fractions solves the issue by splitting the domain into two parts as shown schematically 
below. This schematic sketch represents two paths, each incorporating the dashed line, 
which will be added together. 

Ploty /∕. Solve
x -− 1

2
^2 + 

y

1
^2 ⩵ 1, {x, -−2, 4},

AspectRatio → Automatic, ImageSize → 350, AxesLabel → {"Re", "Im"},
Epilog → {{Thick, Dashed, Line[{{0.5, 0.95}, {0.5, -−0.95}}]},

{PointSize[0.014], Point[{1, 0}]}, {PointSize[0.014], Point[{0, 0}]}}

-−2 -−1 1 2 3 4
Re

-−1.0

-−0.5

0.5

1.0

Im

The principle of deformation of path, illustrated in example 6 on p. 656, covers this situa-
tion nicely. It works because the problem function can be factored.

Factor
2 z -− 1

z2 -− z


-−1 + 2 z

(-−1 + z) z

Apart[%]
1

-−1 + z
+
1

z

egr1 = (-−1 + z)-−1 (*⋆note exponent of -−1 *⋆)

1

-−1 + z

egr2 = z-−1 (*⋆note exponent of -−1 *⋆)

1

z

Taking a look at numbered line (3) on p. 656,

 (z -− z0)m ⅆz =  2 π ⅈ m = -−1
0 m ≠ -−1 and integer

The point z0 is understood to be the point of discontinuity, and in the first factor is equal to 
1.

ci1 =  egr1 ⅆz ⩵ 2 π ⅈ

ContourIntegral
1

-−1 + z
, z ⩵ 2 ⅈ π

For this other factor of the function, the point z0 is equal to 0.
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ci2 =  egr2 ⅆz ⩵ 2 π ⅈ

ContourIntegral
1

z
, z ⩵ 2 ⅈ π

ci3 ⩵ ci1 + ci2 ⩵ 4 π ⅈ

ci3 ⩵ ContourIntegral
1

-−1 + z
, z ⩵ 2 ⅈ π +

ContourIntegral
1

z
, z ⩵ 2 ⅈ π ⩵ 4 ⅈ π

Instead of taking a shortcut and strong-arming Mathematica into submission, there is a 
procedure on MathWorld under the heading Contour Integral, which could possibly be used 
to derive the answer more legitimately.

25. 
ⅇz

z
ⅆz ,

C consists of z = 2 counterclockwise and z = 1 clockwise.

ClearAll["Global`*⋆"]

ⅇz

z

-−1

ⅇ-−z z

In the above form there are no values of z0 which cause a discontinuity. The form that 
allows a discontinuity at z0=0 is the form  ⅇz

z 
1
, and then m=1, which means the 

integral equals 0. This answer agrees with the text.

Plot
ⅇx

x
, y /∕. Solvex2 + y2 ⩵ 1, y /∕. Solvex2 + y2 ⩵ 4,

{x, -−2, 3}, AspectRatio → Automatic, ImageSize → 150,
AxesLabel → {"Re", "Im"}, PlotRange → {-−3.5, 3.5}

-−2 -−1 1 2 3
Re

-−3

-−2

-−1

1

2

3

Im
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A plot of the annular domain and the candidate contour. The contour is not a closed path.

27. 
Cos[z]

z
ⅆz ,

C consists of z = 1 counterclockwise and z = 3 clockwise.

ClearAll["Global`*⋆"]

This time I’ll make the plot first.

Plot
Cos[x]

x
, y /∕. Solvex2 + y2 ⩵ 1, y /∕. Solvex2 + y2 ⩵ 9,

{x, -−3, 3}, AspectRatio → Automatic, ImageSize → 150,
AxesLabel → {"Re", "Im"}, PlotRange → {-−3.5, 3.5},
Epilog → {{Arrowheads[.1], Arrow[{{2.1, 2.1}, {2.3, 1.9}}]},

{Arrowheads[.09], Arrow[{{0.7, 0.67}, {0.55, 0.85}}]}}

-−3 -−2 -−1 1 2 3
Re

-−3

-−2

-−1

1

2

3

Im

The above plot of the annular domain superimposed with candidate contour.
Cos[z]

z

-−1
⩵

z

Cos[z]

True

So an alternate form of the current function is
z

Cos[z]

-−1

In the form shown above, the expression does admit of a discontinuity at the point z0= π
2 .  

And the value π2  is contained in the domain. However, I believe that because of the oppo-

site orientation of the directions of the annuli, as shown by arrowheads, the integral will 
equal zero. A site with some treatment of this is:
http://www.math.unm.edu/~nitsche/courses/313/s16/lec19_int5.pdf. Also, the text, on p. 
658, seems to reinforce this idea when talking about branch cuts. So this problem could end 
up equaling zero not through deformation of path and numbered line (3), but through 
calculation by means of branch cuts, one cut cutting out the point of discontinuity. I will 
skip the green cell coloring, though.
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29. 
Sin[z]

z + 2 ⅈ z
ⅆz , C : z -− 4 -− 2 ⅈ = 5.5 clockwise.

ClearAll["Global`*⋆"]

In[119]:= p1 = PlotReIm
Sin[z]

z + 2 ⅈ z
, {z, -−2, 10}, AspectRatio → 1, ImageSize → 200,

AxesLabel → {"Re", "Im"}, PlotStyle → {Red, Thickness[0.003]},
PlotRange → {{-−2, 10}, {-−0.5, 0.5}};

As Quora reminds me (https://www.quora.com/How-can-I-represent-circles-ellipses-parabolas-and-
hyperbolas-using-complex-numbers), the equation of a complex circle can be expressed as |z - z0| 
= r where z0 is the center and r is the radius.
So in my former equation style, I would have

In[121]:= p2 = ParametricPlotRe5.5 ⅇⅈ t + 4, Im5.5 ⅇⅈ t + 2 ⅈ,
{t, 0, 2 π}, ImageSize → 350, GridLines → Automatic

;

In[122]:= Show[p2, p1]

Out[122]=

In the above plot it is seen that the problem function is continuous on the domain of inter-
est. So I should be able to check the C-R criteria.

In[123]:= f[z_] =
Sin[z]

z + 2 ⅈ z

Out[123]=

 1
5
-− 2 ⅈ

5
 Sin[z]

z
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In[124]:= f[x_, y_] = f[z] /∕. z → x + ⅈ y

Out[124]=

 1
5
-− 2 ⅈ

5
 Sin[x + ⅈ y]

x + ⅈ y

In[130]:= ComplexExpand[%];

In[131]:= u[x_, y_] =
x Cosh[y] Sin[x]

5 x2 + y2
-−

2 y Cosh[y] Sin[x]

5 x2 + y2
+
2 x Cos[x] Sinh[y]

5 x2 + y2
+
y Cos[x] Sinh[y]

5 x2 + y2
;

In[132]:= v[x_, y_] = -−
2 x Cosh[y] Sin[x]

5 x2 + y2
-−

y Cosh[y] Sin[x]

5 x2 + y2
+
x Cos[x] Sinh[y]

5 x2 + y2
-−
2 y Cos[x] Sinh[y]

5 x2 + y2
;

In[133]:= PossibleZeroQ[D[u[x, y], x] -− D[v[x, y], y]]
PossibleZeroQ[D[v[x, y], x] + D[u[x, y], y]]

Out[133]= True

Out[134]= True

The C-R criteria being satisfied, the value of the integral around the path of interest is 
equal to zero.
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